Derivative $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$

Approximations of the Derivative

forward difference

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

$f^{\prime}(x) \approx \frac{f(x)-f(x-\Delta x)}{\Delta x}$

Linear Ordinary Differential Equations

$\mathbf{1}^{\text {st }}$ order ODE :

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

Initial Value Problem:
$y\left(x_{0}\right)=y_{0}$

Integrating Factor :

$\mu(x)=e^{\int P(x) d x}$ or $\mu(x)=e^{\int_{x}^{x} P(x) d x}$

General Solution :

$y=\frac{c}{\mu(x)}+\frac{1}{\mu(x)} \int \mu(x) Q(x) d x$

Solution of IVP :
$y=\frac{\mu\left(x_{0}\right)}{\mu(x)} y_{0}+\frac{1}{\mu(x)} \int_{x_{0}}^{x} \mu\left(x^{\prime}\right) Q\left(x^{\prime}\right) d x^{\prime}$

Homogeneous ODE $(Q=0)$:

$$
\frac{d y}{d x}+P(x) y=0
$$

General Solution :
$y=\frac{c}{\mu(x)}$
Solution of IVP :
Constant Coefficient $P(x)=a$:

$$
y=\frac{\mu\left(x_{0}\right)}{\mu(x)} y_{0} \quad y=y_{0} e^{a\left(x_{0}-x\right)}
$$

$2^{\text {nd }}$ order homogeneous ODE with constant coefficients :

$$
\frac{d^{2} y}{d x^{2}}-m^{2} y=0 \quad x \in(0, L)
$$

General Solution can be in one of the following forms:
$y=c_{1} e^{-m x}+c_{2} e^{m x}$
$y=c_{1} e^{-m(x-L)}+c_{2} e^{m(x-L)}$
$y=c_{1} \sinh (m x)+c_{2} \cosh (m x)$
$y=c_{1} \sinh [m(x-L)]+c_{2} \cosh [m(x-L)]$

Boundary Value Problem (there are 3 types of the boundary conditions):
$y(0)=y_{0}$
$y^{\prime}(0)=f_{0}$
$-k y^{\prime}(0)+h y(0)=f_{0}$
$y(L)=y_{L}$
$y^{\prime}(L)=f_{L}$
$k y^{\prime}(L)+h y(L)=f_{L}$
(one boundary condition has to be set at $x=0$, and one boundary condition at $x=L$)

Solution of BVP :

find the coefficients c_{1} and c_{2} such that solution satisfies the boundary conditions

